Generalizations of the Bernoulli and Appell Polynomials

نویسندگان

  • GABRIELLA BRETTI
  • PIERPAOLO NATALINI
  • PAOLO E. RICCI
چکیده

We first introduce a generalization of the Bernoulli polynomials, and consequently of the Bernoulli numbers, starting from suitable generating functions related to a class of Mittag-Leffler functions. Furthermore, multidimensional extensions of the Bernoulli and Appell polynomials are derived generalizing the relevant generating functions, and using the Hermite-Kampé de Fériet (or Gould-Hopper) polynomials. The main properties of these polynomial sets are shown. In particular, the differential equations can be constructed by means of the factorization method.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Appell sequences of polynomials of Bernoulli and Euler type

A construction of new sequences of generalized Bernoulli polynomials of first and second kind is proposed. These sequences share with the classical Bernoulli polynomials many algebraic and number theoretical properties. A class of Euler-type polynomials is also presented. © 2007 Elsevier Inc. All rights reserved.

متن کامل

A new approach to Bernoulli polynomials

Six approaches to the theory of Bernoulli polynomials are known; these are associated with the names of J. Bernoulli [2], L. Euler [4], E. Lucas [8], P. E. Appell [1], A. Hürwitz [6] and D. H. Lehmer [7]. In this note we deal with a new determinantal definition for Bernoulli polynomials recently proposed by F. Costabile [3]; in particular, we emphasize some consequent procedures for automatic c...

متن کامل

A new class of generalized Laguerre-based poly-Bernoulli polynomials

A new class of generalized Laguerre-based poly-Bernoulli polynomials are discussed with an attempt to generate new and interesting identities, some are in relation with Stirling number of the second kind. Different analytical means and generating function method is incorporated to derive implicit summation formulae and symmetry identities for generalized Laguerre poly-Bernoulli polynomials. It ...

متن کامل

Laguerre Polynomials in Several Hypercomplex Variables and Their Matrix Representation

Recently the creation matrix, intimately related to the Pascal matrix and its generalizations, has been used to develop matrix representations of special polynomials, in particular Appell polynomials. In this paper we describe a matrix approach to polynomials in several hypercomplex variables based on special block matrices whose structures simulate the creation matrix and the Pascal matrix. We...

متن کامل

Some generalizations of 2D Bernoulli polynomials

As a generalization of 2D Bernoulli polynomials, neo-Bernoulli polynomials are introduced from a point of view involving the use of nonexponential generating functions. Their relevant recurrence relations, the differential equations satisfied by them and some other properties are obtained. Especially, we obtain the relationships between them and neo-Hermite polynomials. We also study some other...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004